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Basic definitions

Definition

Vector space is a set of elements that can be added and multiplied
by scalars under certain conditions.

.
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Lie algebra g is a Vector space equipped with a Lie Bracket
operation g X g — g with 2 following properties Va, b,c € g
Q [a, b] is an alternating ([a, b] = —[b, a]) bilinear map

0 [a, 16, cl] = [[2, b], c] + [b [3, c]]
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Basic definitions

Definition

Vector space is a set of elements that can be added and multiplied
by scalars under certain conditions.

Definition

Lie algebra g is a Vector space equipped with a Lie Bracket
operation g X g — g with 2 following properties Va, b,c € g
O [a, b] is an alternating ([a, b] = —[b, a]) bilinear map

Q [a,[b, c]] = [[2, b], c] + [b [3, c]]

@ Ideal of a Lie algebra g is a subspace [ such that [g,/] C /.

o Lie algebra is called Simple if it has no proper nonzero ideals.
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Basic definitions

Definition
Eigenspace V= {v € V|A(v) = Av} where A: V — V is a given
linear map and X is some constant.

.
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Basic definitions

Definition

Eigenspace V= {v € V|A(v) = Av} where A: V — V is a given
linear map and X is some constant.

Weight space V)= {v|r(h)(v) = 1(h)v for all h € b}
P:h—R m: b — End(V)

.
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Basic definitions

Definition

Reduced root system is a set (E, A), where E is a
finite-dimensional Euclidean space over R with a positive definite
symmetric bilinear form (-,-) and A is a finite subset, such that:

e 0¢ A;RA=V,

o If « € A, then na € A if and only if n = £1;

@ For a, 3 € A, the projection of 3 onto a is in {0, £5, £a}
o If o, 8 € A, then reflection s,(8) € A, where

(a, B)

w(8) =B -2 03

(07
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Basic definitions

Definition

Reduced root system is a set (E, A), where E is a
finite-dimensional Euclidean space over R with a positive definite
symmetric bilinear form (-,-) and A is a finite subset, such that:

e 0¢ A;RA=V,

o If « € A, then na € A if and only if n = £1;

@ For a, 3 € A, the projection of 3 onto a is in {0, £5, £a}
o If o, 8 € A, then reflection s,(8) € A, where

(@, B)
(a, @)

We call a root system indecomposable if it cannot be expressed as
AU B for some sets A and B such that Va € A, b € B we have
(a, b) = 0.

Elements of a root system are called roots.

Sa(B) =5 =2

(07
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Basic definitions

@ Set of positive roots AT is subset of A, such that it doesn't
contain —« and « simultaneously and for any two distinct
a,3 € AT such that o + 3 € A, we have o+ 3 € A™. Such
a set is not unique.
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Basic definitions

@ Set of positive roots AT is subset of A, such that it doesn't
contain —« and « simultaneously and for any two distinct
a,3 € AT such that o + 3 € A, we have o+ 3 € A™. Such
a set is not unique.

@ Root is called simple if it cannot be written as a sum of two
elements of A™.
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Simple Lie algebra and indecomposable root system

@ Let us consider an indecomposable root system of finite type:
ATUAT CQ

(where Q denotes the root lattice) associated with the
symmetric pairing:

@ Let {a;};c, denote a choice of simple roots.
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@ The Cartan matrix (ajj);je; and the symmetrized Cartan
matrix (djj); jes of this root system are:

I 2(w, o)
Y (ai, o)
and
dU = ((yh OU)
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Structure of a simple Lie algebra

@ It is well-known that the following Lie algebra associated with
an indecomposable root system A is simple. All simple
finite-dimensional Lie algebras arise that way.

g= Q<ei, it hi>,-e//re|ations 1-3

where we impose the following relations for all i,j € I:
O [e,[e,.. . [e[eg]]...]] =0, ifi#j
1—a; Lie brackets
O [hj, el = djie;,  [hj; hi] =0
Q [e;, fil = dihi

as well as the opposite relations with e’s replaced by f's.

.
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Simple Lie algebras and indecomposable root systems

@ Such Lie algebra has a triangular decomposition
g=ntophon

where n™, b, n™ are the Lie subalgebras of g generated by the
e;, hj, f;, respectively.
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Simple Lie algebras and indecomposable root systems

@ Such Lie algebra has a triangular decomposition
g=ntophon

where n™, b, n™ are the Lie subalgebras of g generated by the
e;, hj, f;, respectively.

@ Also the Lie algebra g is graded by @, if we let:

deg e = «j, deg hj =0, deg fi=—q;
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Simple Lie algebras and indecomposable root systems

@ Such Lie algebra has a triangular decomposition
g=ntophon

where n™, b, n™ are the Lie subalgebras of g generated by the
e;, hj, f;, respectively.

@ Also the Lie algebra g is graded by @, if we let:
deg e = «j, deg hy =0, degfi=—q;
@ It is well-known that we can decompose n™ as follows:
nt = @ Q- e,

aeAt
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Dynkin diagrams

@ Each Cartan matrix can be illustrated by a Dynkin diagram.

o If a root system is indecomposable, then the corresponding
Dynkin diagram looks like one of the following diagrams:

AyO—O0—0------ 00 F,00900 Gy0=0
Buo—0------ O—0=0
ChO—0------ o—o<0 Fs
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Affine Lie algebra

@ Let us introduce Affine Lie algebra with a trivial central
charge (a.k.a. loop Lie algebra)

Lg=g[t,t '] = g®o Q[t, t ']
where the Lie bracket is simply given by:

[x@t™y @t =[x,y]® t™"
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Affine Lie algebra

@ Let us introduce Affine Lie algebra with a trivial central
charge (a.k.a. loop Lie algebra)

Lg=g[t,t '] = g®o Q[t, t ']
where the Lie bracket is simply given by:

[x@t™y @t =[x,y]® t™"

@ The triangular decomposition extends to a similar
decomposition:

Lg=Ln" ®LhD Ln~
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Alphabet associated to affine Lie algebra

@ We think of Ln™ as being generated by:
e =ewt! Vieldecl

@ Associate to e(d) the letter i(9); call d the exponent of HCA
@ The letters {i d)}dEZ form our Alphabet.

@ Any word in our alphabet will be called a loop word:

[il(dl) . iﬁ"’k’}
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Our order on Alphabet

@ We fix a set of weights C = {c¢;};., with ¢; € Z~¢ for all i
@ Let us fix an order on /.

@ For the rest of the presentation, we fix the following order on
our alphabet for [n:

d e
G

i@ < &) = L o
d_ . .
E—?andl<j

@ Now this induces lexicographic order on a set of loop words.
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Lyndon words and Standard words in finite alphabets

Definition
A word ¢ = [iy ... ix] is called Lyndon if it is strictly smaller than
all of its cyclic permutations.
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Lyndon words and Standard words in finite alphabets

Definition

A word ¢ = [iy ... ix] is called Lyndon if it is strictly smaller than
all of its cyclic permutations.

@ Any Lyndon word ¢ has a costandard factorization: ¢ = 14>
such that /5 is the longest proper suffix of £ which is Lyndon,
in which case ¢; turns out to be Lyndon as well.

@ For any Lyndon word ¢, we define e, € Ln™ inductively by
e[t = e,(d) foriel and d € Z and:

er = [er,, €0,] € LnT,

where ¢ = ¢1/5 is the above costandard factorization.
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Standard Lyndon word

Definition

A Lyndon word ¢ in a finite alphabet is called standard Lyndon if
ey cannot be expressed as a linear combination of e, for various
Lyndon words m > /.
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Standard Lyndon word

Definition

A Lyndon word ¢ in a finite alphabet is called standard Lyndon if
ey cannot be expressed as a linear combination of e, for various
Lyndon words m > /.

deZ

@ Since we have an infinite alphabet {i(d) icl » We want to

extend this definition to our affine case.
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Filtration

@ The following filtration is a slight generalization of the
approach of Negut-Tsymbaliuk.

[nt = U QN
s=0

defined for the finite-dimensional Lie subalgebras:

LGt = @ @ Qe cint

a€At—s-f(a)<d<s-f(a)

where e{?) = e, ® t¢ and f(«) denotes the weighted height:
fla)=>Y ki-c if a=> k-a
iel icl

@ We can apply the definition of standard Lyndon word to each
L(s)n+, and we want to show that it does not depend on s.
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Leclerc rule

There exists a bijection:

C: {(a,d) e AT xZ||d| < s- f(a)}
5 {standard Lyndon loop words for L(s)n+}

explicitly determined by {(a;, d) = [i{9)] and Leclerc rule:

Ua,d) = max {
(71,d1)+(72,d2)=(,d)
YEAT, |di|<sf (k)
£(y1,d1)<l(v2,d2)

concatenation £(vy1, d1)¢(72, dg)}
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Periodicity, Convexity and Monotonicity properties

It is easy to prove that the following well-known properties work
for our choice of order as well:
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Periodicity, Convexity and Monotonicity properties

It is easy to prove that the following well-known properties work
for our choice of order as well:

@ Periodicity:

fa,d) = [{) .. W] —

Yo, d + () = [i{dl“l) . iﬁdk“k)]
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Periodicity, Convexity and Monotonicity properties

It is easy to prove that the following well-known properties work
for our choice of order as well:
@ Periodicity:

Yo, d) = [il(dl) .. iﬁdﬂ —

fa,d+ fa)) = [Tt e)]

Example for sly, c; = co = 3,c3 =5, and order 1 < 2 < 3:
oy + az + a3,5) = [3(3)2(1)1(1)]
((a1 + oz + az, 16) = [3(8)2(4)1(4)]
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Periodicity, Convexity and Monotonicity properties

It is easy to prove that the following well-known properties work
for our choice of order as well:

@ Periodicity:

Yo, d) = [il(dl) . iﬁdﬂ —
Yo, d + f(@)) = [i{"l*cﬂ o iﬁdk“k)]
@ Convexity:
la,d) <o+ B,d+t) <L(B,t)
for all (o, d), (B, t),(a+ B,d +t) € AT x Z, such that
o, d) < 4B, t)
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Periodicity, Convexity and Monotonicity properties

It is easy to prove that the following well-known properties work
for our choice of order as well:

@ Periodicity:

Yo, d) = [il(dl) . iﬁdﬂ —
Yo, d + f(@)) = [i{"l*cﬂ o iﬁdk“k)]
@ Convexity:
la,d) <o+ B,d+t) <L(B,t)
for all (o, d), (B, t),(a+ B,d +t) € AT x Z, such that
o, d) < 4B, t)

@ Monotonicity:
Ua,d +1) < {(a,d) V(a,d) € AT x Z
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The Exponent Rule

o Aword w= [il(dl) . i,gd")} is called exponent-tight if

i) > D forall 1< k,r<n.
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i) > D forall 1< k,r<n.

o If w is Lyndon, it is equivalent to

il(dl) > i,(d'+1) forall 1<r<n.
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The Exponent Rule

o Aword w= [il(dl) . i,(,d")} is called exponent-tight if

i) > D forall 1< k,r<n.

o If w is Lyndon, it is equivalent to

il(dl) > i,(d’+1) forall 1<r<n.

@ The Exponent Rule 1: For any s € Z and |d| < sf(«) , the
affine standard Lyndon word /(a, d) is exponent-tight.
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The Exponent Rule

o Aword w= [il(dl) . i,(,d")} is called exponent-tight if

i) > D forall 1< k,r<n.

o If w is Lyndon, it is equivalent to

il(dl) > i,(d’+1) forall 1<r<n.
@ The Exponent Rule 1: For any s € Z and |d| < sf(«) , the
affine standard Lyndon word /(a, d) is exponent-tight.
@ The Exponent Rule 2: The first letter of ¢(c, d + 1) equals
maxlgkgn{i,gdkﬂ)}, where {(a, d) = [i:{dl) . i,(,d")] and
de{—sf(a),...,sf(a) —1}.
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The Exponent Rule

o Aword w= [il(dl) . i,(,d")} is called exponent-tight if

i) > D forall 1< k,r<n.

o If w is Lyndon, it is equivalent to

il(dl) > i,(d’+1) forall 1<r<n.

@ The Exponent Rule 1: For any s € Z and |d| < sf(«) , the
affine standard Lyndon word /(a, d) is exponent-tight.

@ The Exponent Rule 2: The first letter of ¢(c, d + 1) equals
maxlgkgn{i,gdkﬂ)}, where ((a, d) = [i:{dl) . i,(,d")] and
de{—sf(a),...,sf(a) —1}.

e Corollary: ¢(«,d) is a permutation of letters of the maximal
Lyndon word of the given degree (a, d).
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