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Basic definitions

Definition

Vector space is a set of elements that can be added and multiplied
by scalars under certain conditions.

Definition

Lie algebra g is a Vector space equipped with a Lie Bracket
operation g× g → g with 2 following properties ∀a, b, c ∈ g

1 [a, b] is an alternating ([a, b] = −[b, a]) bilinear map

2 [a, [b, c]] = [[a, b], c] + [b, [a, c]]
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1 [a, b] is an alternating ([a, b] = −[b, a]) bilinear map

2 [a, [b, c]] = [[a, b], c] + [b, [a, c]]

Ideal of a Lie algebra g is a subspace I such that [g, I ] ⊆ I .

Lie algebra is called Simple if it has no proper nonzero ideals.
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Basic definitions

Definition

Eigenspace Vλ= {v ∈ V |A(v) = λv} where A : V → V is a given
linear map and λ is some constant.

Definition

Weight space V h
ψ= {v |π(h)(v) = ψ(h)v for all h ∈ h}

ψ : h → R π : h → End(V )
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Basic definitions

Definition

Reduced root system is a set (E ,∆), where E is a
finite-dimensional Euclidean space over R with a positive definite
symmetric bilinear form (·, ·) and ∆ is a finite subset, such that:

0 /∈ ∆;R∆ = V ;

If α ∈ ∆, then nα ∈ ∆ if and only if n = ±1;

For α, β ∈ ∆, the projection of β onto α is in {0,±α
2 ,±α}

If α, β ∈ ∆, then reflection sα(β) ∈ ∆, where

sα(β) = β − 2
(α, β)

(α, α)
α

We call a root system indecomposable if it cannot be expressed as
A ∪ B for some sets A and B such that ∀a ∈ A, b ∈ B we have
(a, b) = 0.
Elements of a root system are called roots.
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Basic definitions

Set of positive roots ∆+ is subset of ∆, such that it doesn’t
contain −α and α simultaneously and for any two distinct
α, β ∈ ∆+ such that α+ β ∈ ∆, we have α+ β ∈ ∆+. Such
a set is not unique.

Root is called simple if it cannot be written as a sum of two
elements of ∆+.

5 / 21



Basic definitions

Set of positive roots ∆+ is subset of ∆, such that it doesn’t
contain −α and α simultaneously and for any two distinct
α, β ∈ ∆+ such that α+ β ∈ ∆, we have α+ β ∈ ∆+. Such
a set is not unique.

Root is called simple if it cannot be written as a sum of two
elements of ∆+.

5 / 21



Simple Lie algebra and indecomposable root system

Let us consider an indecomposable root system of finite type:

∆+ ⊔∆− ⊂ Q

(where Q denotes the root lattice) associated with the
symmetric pairing:

(·, ·) : Q ⊗ Q → Z

Let {αi}i∈I denote a choice of simple roots.
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Cartan matrix

The Cartan matrix (aij)i ,j∈I and the symmetrized Cartan
matrix (dij)i ,j∈I of this root system are:

aij =
2(αi , αj)

(αi , αi )

and

dij = (αi , αj)
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Structure of a simple Lie algebra

It is well-known that the following Lie algebra associated with
an indecomposable root system ∆ is simple. All simple
finite-dimensional Lie algebras arise that way.

Definition

g = Q⟨ei , fi , hi ⟩i∈I
/
relations 1 - 3

where we impose the following relations for all i , j ∈ I :

1 [ei , [ei , . . . [ei , [ei , ej ]] . . . ]]︸ ︷︷ ︸
1−aij Lie brackets

= 0, if i ̸= j

2 [hj , ei ] = djiei , [hj , hi ] = 0

3 [ei , fj ] = δji hi

as well as the opposite relations with e’s replaced by f ’s.
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Simple Lie algebras and indecomposable root systems

Such Lie algebra has a triangular decomposition

g = n+ ⊕ h⊕ n−

where n+, h, n− are the Lie subalgebras of g generated by the
ei , hi , fi , respectively.

Also the Lie algebra g is graded by Q, if we let:

deg ei = αi , deg hi = 0, deg fi = −αi

It is well-known that we can decompose n+ as follows:

n+ =
⊕
α∈∆+

Q · eα
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Dynkin diagrams

Each Cartan matrix can be illustrated by a Dynkin diagram.

If a root system is indecomposable, then the corresponding
Dynkin diagram looks like one of the following diagrams:
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Affine Lie algebra

Let us introduce Affine Lie algebra with a trivial central
charge (a.k.a. loop Lie algebra)

Lg = g[t, t−1] = g⊗Q Q[t, t−1]

where the Lie bracket is simply given by:

[x ⊗ tm, y ⊗ tn] = [x , y ]⊗ tm+n

The triangular decomposition extends to a similar
decomposition:

Lg = Ln+ ⊕ Lh⊕ Ln−
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Alphabet associated to affine Lie algebra

We think of Ln+ as being generated by:

e
(d)
i = ei ⊗ td ∀ i ∈ I , d ∈ Z.

Associate to e
(d)
i the letter i (d); call d the exponent of i (d).

The letters {i (d)}d∈Zi∈I form our Alphabet.

Any word in our alphabet will be called a loop word:[
i
(d1)
1 . . . i

(dk )
k

]
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Our order on Alphabet

We fix a set of weights C = {ci}i∈I with ci ∈ Z>0 for all i

Let us fix an order on I .

For the rest of the presentation, we fix the following order on
our alphabet for Ln+:

i (d) < j (e) ⇐⇒


d
ci
> e

cj

or
d
ci
= e

cj
and i < j

Now this induces lexicographic order on a set of loop words.
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Lyndon words and Standard words in finite alphabets

Definition

A word ℓ = [i1 . . . ik ] is called Lyndon if it is strictly smaller than
all of its cyclic permutations.

Any Lyndon word ℓ has a costandard factorization: ℓ = ℓ1ℓ2
such that ℓ2 is the longest proper suffix of ℓ which is Lyndon,
in which case ℓ1 turns out to be Lyndon as well.

For any Lyndon word ℓ, we define eℓ ∈ Ln+ inductively by

e[i (d)] = e
(d)
i for i ∈ I and d ∈ Z and:

eℓ = [eℓ1 , eℓ2 ] ∈ Ln+,

where ℓ = ℓ1ℓ2 is the above costandard factorization.
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Standard Lyndon word

Definition

A Lyndon word ℓ in a finite alphabet is called standard Lyndon if
eℓ cannot be expressed as a linear combination of em for various
Lyndon words m > ℓ.

Since we have an infinite alphabet {i (d)}d∈Zi∈I , we want to
extend this definition to our affine case.

15 / 21



Standard Lyndon word

Definition

A Lyndon word ℓ in a finite alphabet is called standard Lyndon if
eℓ cannot be expressed as a linear combination of em for various
Lyndon words m > ℓ.

Since we have an infinite alphabet {i (d)}d∈Zi∈I , we want to
extend this definition to our affine case.

15 / 21



Filtration

The following filtration is a slight generalization of the
approach of Neguţ-Tsymbaliuk.

Ln+ =
∞⋃
s=0

L(s)n+

defined for the finite-dimensional Lie subalgebras:

L(s)n+ =
⊕
α∈∆+

⊕
−s·f (α)≤d≤s·f (α)

Q · e(d)α ⊂ Ln+

where e
(d)
α = eα ⊗ td and f (α) denotes the weighted height:

f (α) =
∑
i∈I

ki · ci if α =
∑
i∈I

ki · αi

We can apply the definition of standard Lyndon word to each
L(s)n+, and we want to show that it does not depend on s.
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Leclerc rule

Theorem

There exists a bijection:

ℓ :
{
(α, d) ∈ ∆+ × Z | |d | ≤ s · f (α)

}
∼→

{
standard Lyndon loop words for L(s)n+

}
explicitly determined by ℓ(αi , d) = [i (d)] and Leclerc rule:

ℓ(α, d) = max
(γ1,d1)+(γ2,d2)=(α,d)
γk∈∆+, |dk |≤sf (γk )
ℓ(γ1,d1)<ℓ(γ2,d2)

{
concatenation ℓ(γ1, d1)ℓ(γ2, d2)

}
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Periodicity, Convexity and Monotonicity properties

It is easy to prove that the following well-known properties work
for our choice of order as well:

Periodicity:

ℓ(α, d) =
[
i
(d1)
1 . . . i

(dk )
k

]
=⇒

ℓ(α, d + f (α)) =
[
i
(d1+c1)
1 . . . i

(dk+ck )
k

]

Convexity:

ℓ(α, d) < ℓ(α+ β, d + t) < ℓ(β, t)

for all (α, d), (β, t), (α+ β, d + t) ∈ ∆+ × Z, such that

ℓ(α, d) < ℓ(β, t)

Monotonicity:

ℓ(α, d + 1) < ℓ(α, d) ∀ (α, d) ∈ ∆+ × Z
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Example for sl4, c1 = c2 = 3, c3 = 5, and order 1 < 2 < 3:
ℓ(α1 + α2 + α3, 5) = [3(3)2(1)1(1)]
ℓ(α1 + α2 + α3, 16) = [3(8)2(4)1(4)]
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The Exponent Rule

A word w =
[
i
(d1)
1 . . . i

(dn)
n

]
is called exponent-tight if

i
(dk )
k ≥ i

(dr+1)
r for all 1 ≤ k , r ≤ n.

If w is Lyndon, it is equivalent to

i
(d1)
1 ≥ i

(dr+1)
r for all 1 < r ≤ n.

The Exponent Rule 1: For any s ∈ Z and |d | ≤ sf (α) , the
affine standard Lyndon word ℓ(α, d) is exponent-tight.

The Exponent Rule 2: The first letter of ℓ(α, d + 1) equals

max1≤k≤n{i
(dk+1)
k }, where ℓ(α, d) =

[
i
(d1)
1 . . . i

(dn)
n

]
and

d ∈ {−sf (α), . . . , sf (α)− 1}.
Corollary: ℓ(α, d) is a permutation of letters of the maximal
Lyndon word of the given degree (α, d).
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